Earthquakes Triggered by Unconventional Oil and Gas Development

Mark D. Zoback
Professor of Geophysics

Stanford SCHOOL OF EARTH, ENERGY & ENVIRONMENTAL SCIENCES

Director

Stanford NATURAL GAS INITIATIVE
School of Earth, Energy & Environmental Sciences and Precourt Institute for Energy
Unconventional Gas and Tight Oil Development

U.S. Natural Gas Production
(billions of cubic feet per day)

Unconventional

Unconventional

~25% Recovery

Conventional

U.S. Oil Production
(million barrels per day)

~1/2 Coal

Conventional Decline Curve

<10% Recovery

Source: U.S. Department of Energy, Energy Information Administration (EIA)
Unconventional Gas, NG Liquids and Oil Development

- Horn River Basin/Cordova Embayment: >700 Tcf
- Montney Deep Basin: >250 Tcf
- Colorado Group: >300 Tcf
- Bakken: 3.65 Billion Bbl
- Green River: 1.3-2 Trillion Bbl
- Lewis/Mancos: 97 Tcf
- Antrim: 35-160 Tcf
- New Albany: 86-160 Tcf
- Michigan Basin: 86-160 Tcf
- Marcellus: 225-520 Tcf
- Haynesville (Shreveport/Louisiana): 29-39 Tcf
- Fayetteville: 20 Tcf
- Floyd/Conasauga: 20 Tcf

OIL SHALE PLAY
GAS SHALE PLAY
Opportunities and Challenges of Shale Gas Production

The development of shale gas resources in an environmentally responsible manner presents a critical opportunity to move toward decarbonizing the global energy system.

Mark D. Zoback and Douglas J. Arend

The use of horizontal drilling and maintenance hydraulic fracturing technologies has enabled the production of immense quantities of natural gas, especially in the United States but increasingly in other countries around the world. The global availability of this resource raises both opportunities and challenges that need to be addressed in a timely and effective manner.

There are some little questions that arise from shale gas development, coupled with the expanding demand for natural gas for power generation, can have far-reaching effects on air quality, groundwater contamination, and energy security in many countries. In this context, shale gas resources represent a critically important transition fuel on the path to a decarbonized energy future. For these benefits to be realized, however, it is important that shale gas resources be developed with effective environmental safeguards to reduce their impact on land use, water resources, air quality, and nearby communities.

Background

Geologists have long known that large amounts of organic matter and natural gas are trapped usually by clay and other fine-grained minerals in many...
Earthquakes in the Mid-Continent

Ellsworth (2013)
Earthquakes in the Mid-Continent

Ellsworth (2013)
Topics

- Earthquake Fundamentals - A Context for Understanding Earthquake Triggering
- More Earthquakes in Oklahoma Than California?
- Managing Earthquake Risk
I. We Live on a Critically-Stressed Crust

- Earthquakes Occur Nearly Everywhere in Intraplate Areas
- Small Perturbations <RIS> Capable of Triggering Seismicity, Even in “Stable Areas”
II. Fluid Injection Can Induce Earthquakes

Waste Injection
Denver Arsenal

Fluid Injection
Rangely Oil Field
A Simple Earthquake Machine

\[\tau = \mu_n \sigma \]
\[\sigma_n = S_n - P_p \]

Friction

Block jumps ahead in sudden slip events (like earthquakes) and the stress drops
III. Earthquake Hazard Depends on Whether Injection Increases Pore Pressure in Potentially Active Basement Faults

Prague Earthquakes
M ~5.7

Keranen et al. (2013)
Fault Patch Size (m)

Major: can cause serious damage over large areas.

Strong: can be destructive in populated areas

Moderate: can cause damage to poorly constructed buildings

Noticeable shaking but damage is unlikely

Minor: felt but does not cause damage

Strong: can be destructive in populated areas

EQ stress drop

slip=1m

slip=1cm

slip=0.1mm

EQ stress drop

slip on fault

0.1MPa

10MPa

Earthquake Magnitude

Damaging Earthquakes Require Big Faults
IV. Basement Faults That are Potentially Active in the Current Stress Field Are Also Hydraulically Conductive

Zoback and Townend (2001)

Zhang et al. (2013)
M 2.3 Earthquake During HF in Bowland Basin

Figure 24: Overview of injection volume and seismicity of all treatment stages in well PH1. More small events were recorded in May because the monitoring system was improved with local stations.
Topics

- Earthquake Fundamentals - A Context for Understanding Earthquake Triggering
- More Earthquakes in Oklahoma Than California?
- Managing Earthquake Risk
Oklahoma Has Had 69% of the Recent Earthquakes

Llenos et al. AGU (2014)
Injection and Earthquakes in Oklahoma

Prior to 2009
M 4 Eqs 1/10 years

M 4 Eqs in 2015
1/11 days

Walsh and Zoback (2015)
SEISMOLOGY

Oklahoma’s recent earthquakes and saltwater disposal

F. Rall Walsh III* and Mark D. Zoback

Over the past 5 years, parts of Oklahoma have experienced marked increases in the number of small- to moderate-sized earthquakes. In three study areas that encompass the vast majority of the recent seismicity, we show that the increases in seismicity follow 5- to 10-fold increases in the rates of saltwater disposal. Adjacent areas where there has been relatively little saltwater disposal have had comparatively few recent earthquakes. In the areas of seismic activity, the saltwater disposal principally comes from “produced” water, saline pore water that is coproduced with oil and then injected into deeper sedimentary formations. These formations appear to be in hydraulic communication with potentially active faults in crystalline basement, where nearly all the earthquakes are occurring. Although most of the recent earthquakes have posed little danger to the public, the possibility of triggering damaging earthquakes on potentially active basement faults cannot be discounted.
Massive Injection of Produced Water

Oil and Saltwater Production

Salt Water Injection at 2 – 2.5 km
~700 Million Barrels
<1 MPa Pressure Change

Earthquakes 5-6 km Depth
Areas With Increased Disposal Have Earthquakes

3 Areas with 71% of Oklahoma’s Earthquakes:

- Cherokee
- Perry
- Jones

3 Areas with Few Earthquakes:

- Enid
- Oklahoma City
- Ardmore

Map
Where Does the Wastewater Come From?
Topics

- Earthquake Fundamentals - A Context for Understanding Earthquake Triggering
- More Earthquakes in Oklahoma Than California?
- Managing Earthquake Risk
I. Be Proactive

Managing the Seismic Risk Posed by Wastewater Disposal

Mark D. Zoback

From an earthquake perspective, 2011 was a remarkable year. While the devastation accompanying the magnitude 9.0 Tohoku earthquake that occurred off the coast of Japan on March 11 still captures attention worldwide, the relatively stable interior of the U.S. was struck by a somewhat surprising number of small-to-moderate earthquakes that were widely felt. Most of these were natural events, the types of earthquakes that occur from time to time in all intraplate regions. For example, the magnitude 5.8 that occurred in central Virginia on Aug. 23 was felt throughout the northeast, damaged the Washington Monument, and caused the temporary shutdown of a nuclear power plant. This earthquake occurred in the Central Virginia Seismic Zone, an area known to produce relatively frequent small earthquakes.

However, a number of the small-to-moderate earthquakes that occurred in the U.S. interior in 2011 appear to be associated with the disposal of wastewater, at least in part related to natural gas production. Several small earthquakes were apparently caused by injection of wastewater associated with shale gas production near Guy, Ark.; the largest earthquake was a magnitude 4.7 event on Feb. 27. In the Trinidad/Raton area near the border of Colorado and New Mexico, injection of wastewater associated with coalbed methane production seems to be associated with a magnitude-5.3 event that occurred on Aug. 22, and small earthquakes that appear to have been triggered...
II. Avoid Injection Near Potentially Active Faults

M 2.3 Earthquake During HF in Bowland Basin

Figure 8: Reprocessed seismic section showing the two fault types, A and B in the proximity of Preese Hall-1 and Thistleton-1. The seismicity was caused by a type A fault that is contained in the Carboniferous.
Consider Water Recycling As in Pennsylvania
Thank you