Well Construction Operation Integrity IEA – GOT IA April 21-22 University of Western Australia Deep Water

Regulatory and Industry Changes

Requirements

affect mainly Operators

affect Operators & Service Providers

All contracts require a "Marine Well Containment" solution

Assessments required for all deepwater wells, no more "Categorical Exclusions"

Environmental

Worst Case
Discharge
calculations
required. They

drive the Oil
Spill Response
Plan & Financial
Viability
evaluations

&

Well casing & cement design certification

Implementation of a Safety
Management
System "SEMS" by Nov 2011

& Establi

Establishment of an industry lead Center for Offshore Safety,

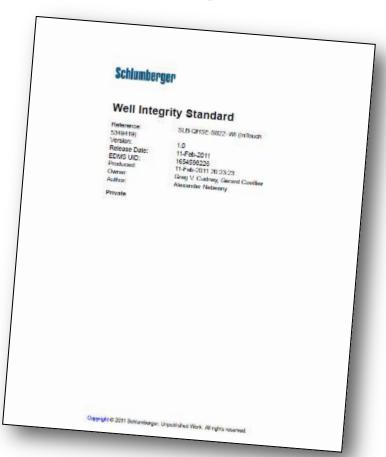
BOEMRE splits into BOEM and BSEE

"SEMS II"
regulations
proposal
released for
comments

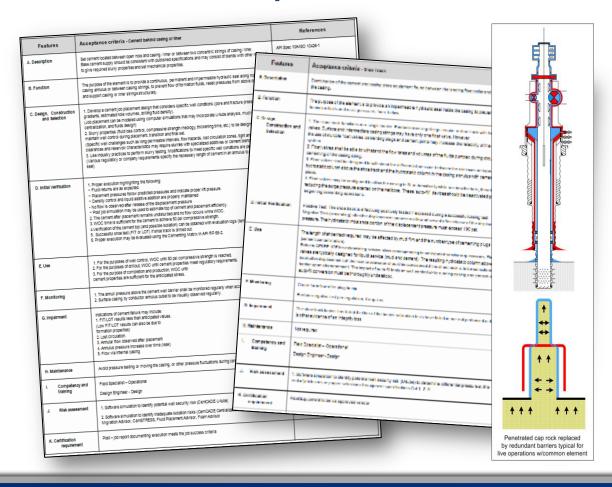
Deep Water

Schlumberger

Well Integrity – Regulations and Standards

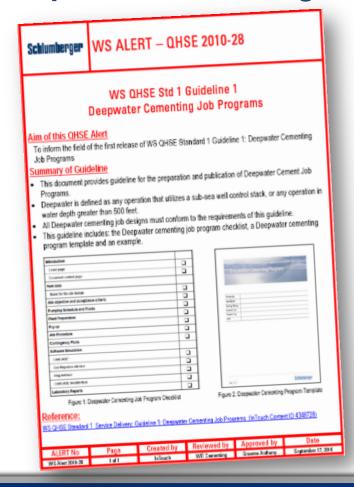

- Regulatory and Industry Changes
- ➤ Industry Standards, and Recommended Practices
 - > API RP 75 Environmental Offshore
 - > API RP 65 Part 2 Flow Zone isolation
 - > API RP 90 Annular Casing Pressure Management
 - ➤ API Standard 96 Deepwater Design Considerations
 - ➤ API Bulletin 97 Well Construction Interface Document (WCID)
- > Service Company Standards

Schlumberger Well Integrity Standard - Update

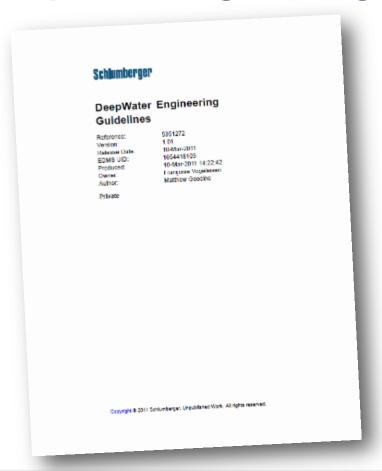

- SLB QHSE Standard 22 Well Integrity Standard
- Released: February 11, 2011
- Well barrier philosophy and definitions

Built using established industry standards and practices:

ISO, API and Norsok used where relevant

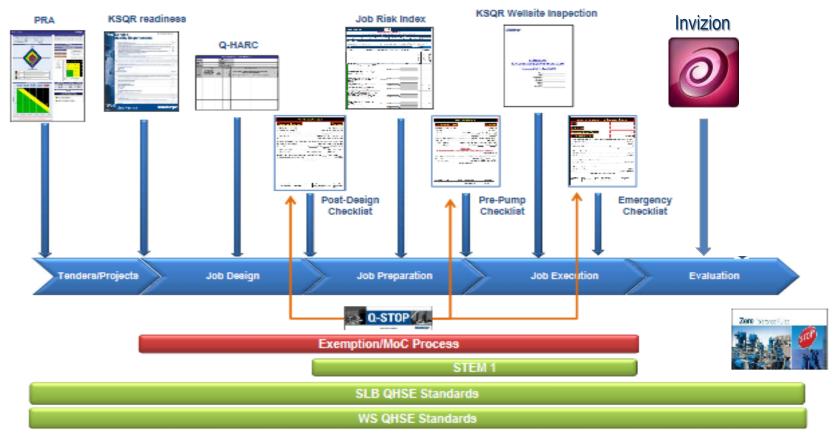


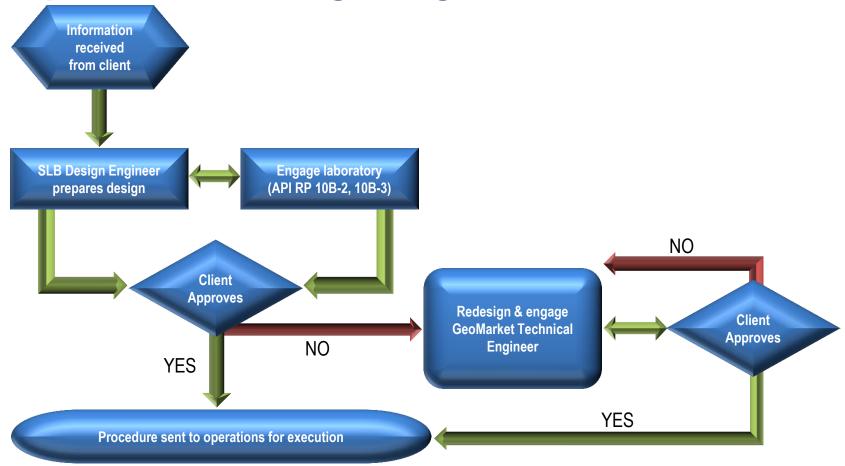
Well Barrier Acceptance Criteria


- Fluid in the Well
- Cement Behind Casing or Liner
- Cement Plugs
- Shoe Track
- Well Suspension Packer & Storm Valve
- Mechanical Tubing Plug

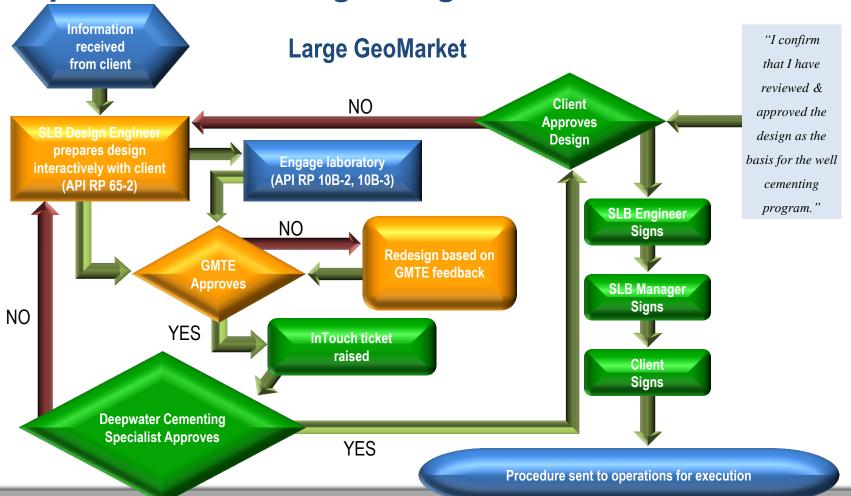
Deepwater Cementing Service Standard 1

- This document provides guidelines for the preparation and publication of Deepwater Cement Job Programs following API RP 65-2
- Deepwater section for Cement Engineering Manual
- Deepwater Program review
- **Deepwater Certification**
 - Field Specialist /Field Engineer / Design Engineer
- Software Enhancements for Deepwater cementing simulation
- Equipment Improvments


Deepwater Engineering Guideline


- Cement Engineering Manual
 - Section 5.10 Deepwater Engineering Guidelines
 - Published March 10, 2011

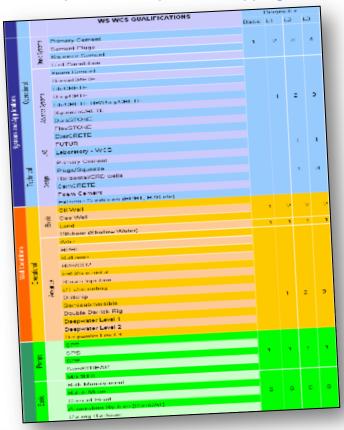
Flaw ESS


Operational Risk Tools

Deepwater Cementing Design Process – Pre Macondo

Deepwater Cementing Design Process - Post Macondo

Deepwater Field Specialist Training


Deepwater Operations											
September 20 - 24, 2010											
H	20- Sep		21-Sep	22-Sep Wedneeday	23-Sep Thureday	24- Sep Friday					
	8:00	Monday	Tueeday OB Pore & Frac Calculations	Review & Homework	Review & Homework	Review & Homework					
١	8:30	Introduction		DW Well Control Equipment	Killing Wells With U- Tubes	Compression of Muds					
١	Introduction 9:00		OB Pore & Frac Calculations	DW Well Control Equipment	Killing Wells With U- Tubes	Calculating Compression					
١	9:30	Introduction		Gas Hydrates	Killing Wells With U-	Calculations For BOP Test					
١	10:00	Introduction	Met-Ocean Concepts	let-Ocean Consopra		Calculations For BOP Test					
١		Deepwater Geology	Met-Ocean Concepts	Gas Hydrates	Stacks Clearing Gas From BO	P Leak Determination					
	10:30	Deepwater Geology	Rig Selection	Shallow Hazarda	Stacks	Thermal Contraction					
	11:00	Deepwater Geology	Rig Selection	Shallow Hazarda	Lean-Oil	Cooling Effects Calculations					
1	11:30	Compaction	Anchoring & Stationkeeping	Shallow Hazarde	Lean-Oil	LUNCH					
	12:00	LUNCH	LUNCH	LUNCH	LUNCH	Cooling Effects Calculations					
	1:00	Pore Pressure Ordigins	Topside Equipment	Casing Design	Leak-Off Teeting						
	1:30	Pore Pressure Ordigins	Topside Equipment	Casing Design	Leak-Off Test Preparation	1 1					
	2:00	Pore Pressure Ordigina		Casing Shoe Placement	t Leak-Off Test Preparation	1 1					
	2:30		Risers	Casing Shoe Placemen	t Leak-Off Test Preparatio	n Drilling Fluids					
	3:00		Risers	Well Control Essential	le Leak-Off Type Curv	res Test					
	3:30		Risers	Well Control Essentia	le Leak-Off Type Cur	vee Test					
	4:0	Fracture Strength		ent U-Tube Concept	s Shallow Sediment Leak-	Offe Round Table					
	4:3				one Shallow Sediment Leak	Offs					
		Pore Pressure Predict	ion DW Well Control Equipit								

 To comply with the Deep water Certification Guideline, Well Services is providing technical training for all Deepwater Field Specialists

Deepwater Certification

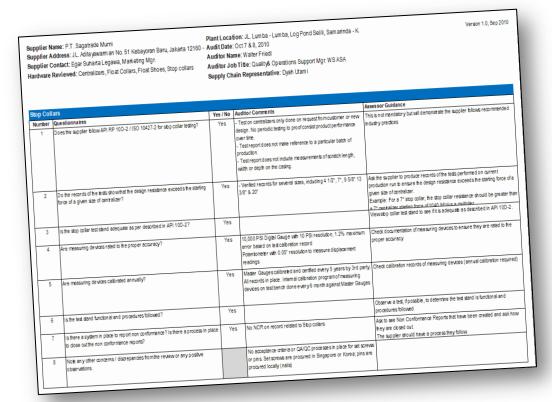
Field Specialists Population Mapping

 3 Deepwater certification levels, parallel but not linked to SCDP grade levels.

Deepwater Level 1: Deepwater Cementer

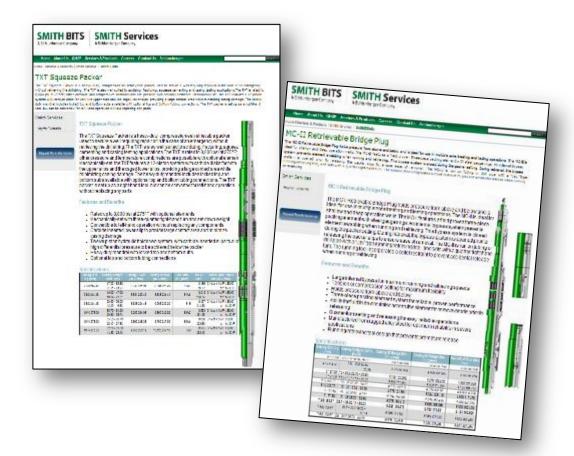
Deepwater Level 2: Deepwater Advanced

Deepwater Level 3: Deepwater Expert


- Certifications assessment through iLearn
- Deepwater specific training for Field engineers

EQUIPMENT Cementing

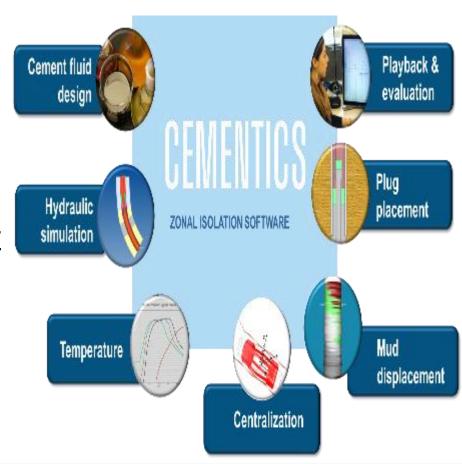
Cementing	Q3 2010	Q4 2010	Q1 2011	Q2 2011	H2 2011
Rationalize Casing Hardware Suppliers	Involve supply chain & audit (API RP 10-F)		Engage Smith	Audit to ensure compliance	
Disposal of Non Compliant Casing Hardware		Write procedure	Publish & communicate	Disposal	Audit to ensure compliance
Rationalize Well Suspension Packer Suppliers		chain & audit 9 11-D1)	Limit SWPS	Disposal	
Rationalize Service Packer Suppliers	Involve supply chain D	& audit (API RP 11- 1)	Limit SWPS		Disposal
Provide Support to the field		SRC Sustaining Engineer assigned		On going support	
Ensure Zoned Equipment has not been compromised			Perform assessment		


Casing Hardware supplier audits

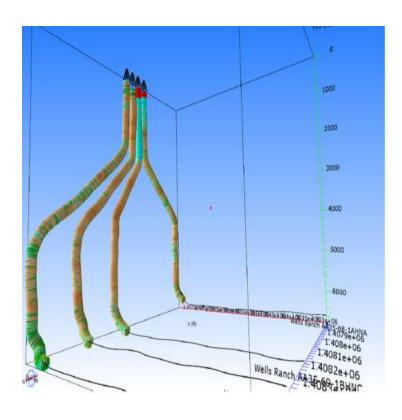
- Casing Hardware suppliers are being limited to companies that comply with:
 - API Spec 10D
 - API RP 10F
- Davis Lynch
- Topco
- SagaTrade
 - Waiting on follow-up audit

Rationalization of Abandonment Packers

- Abandonment Packers have assessed as a gap in our integrity review
 - No direction provided in the past to the field as to the suppliers that meet API 11D1
- Approved Packer / RBP's
 - DLT Packer
 - Smith TXT and TXT-2 Packer
 - Smith MC-II RBP

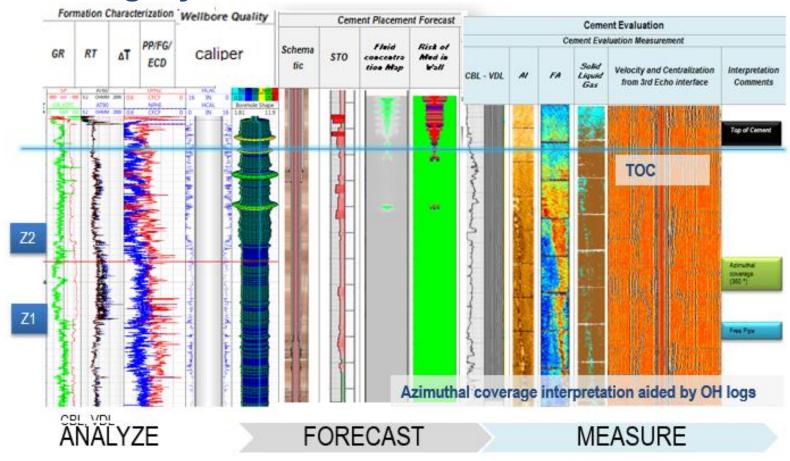

Zoned Equipment

Ensure Pyroban System Integrity



Cementing software upgrade

- Automated Cement slurry Design Process
- API Std 65-2 & RP 96 compliant
- Friction pressure model incl fluids characteristics changes with T and P
- Temperature simulator validated with downhole measurements
- Realistic centralization model based on FE
- Mud displacement model with 3D aperture and azimuthal pressure gradient component
- Cement plug contamination model down pipe + up annulus
- Casing Rotation and Reciprocation effects



Well Integrity Evaluation Workflow INVIZION

- Analyze open hole logs
- Forecast simulation of cementing placement
- Measure against actual acoustic logs

Well integrity evaluation work flow

